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We present an exact functional characterization of linear delay Langevin equations driven by any noise
structure defined through its characteristic functional. This method relies on the possibility of finding an
explicitly analytical expression for each realization of the delayed stochastic process in terms of those of the
driving noise. General properties of the transient dissipative dynamics are analyzed. The corresponding inter-
play with a color Gaussian noise is presented. As a full application of our functional method we study a model
for population growth with non-Gaussian fluctuations: the Gompertz model driven by multiplicative white shot
noise.
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I. INTRODUCTION

Since the pioneering work of Langevin, stochastic differ-
ential equations[1,2] have become a powerful tool for the
study of systems where fluctuations play a fundamental role.
The basic idea of this approach consists in adding explicitly
random elements in the proper system evolution, and then to
characterize the statistical properties of the nonequilibrium
dynamics by averaging the evolution over a set of noise re-
alizations. For physical systems provided with a thermody-
namical equilibrium state, fluctuation and dissipation appear
in a linked way as demanded by the fluctuation dissipation
theorem[3]. Except for this situation, fluctuations and dissi-
pation can be considered as independent elements, whose
characteristics depend on each particular physical situation.
Thus, the fluctuations in general may be non-Gaussian and
the dissipative dynamics introduces arbitrary correlation ef-
fects or memory contributions.

Memory effects can be rigorously derived by using pro-
jector operator techniques[4–7]. This method applies for
linear subsystems embedded in a bigger one. Nevertheless,
in general it is not possible to use this procedure, and the
memory contributions follows from a phenomenological de-
scription. In fact, in many natural and physical situations, the
memory effects arise as a consequence of an intrinsic delay
mechanism, which implies that the dissipative evolution de-
pends on the state of the system in a shifted previous time.
Remarkable examples of this situation arise in physics, biol-
ogy, physiology, etc.[8–18]. This particular signature in the
dissipative dynamics motivated the study of differential de-
lay equations[19,20] and delay Langevin equations. An ex-
act analytic treatment of these equations is in general ex-
tremely difficult. Nevertheless, some progress was achieved
in the characterization of linear stochastic evolutions[21–31]
driven by Gaussian fluctuations. One of the goals of the
present paper is to go, in this analysis, beyond the Gaussian
fluctuations.

As was previously mentioned, non-Gaussian fluctuation
appears in a natural way in many situations of interest. Thus,
the characterization of linear delay Langevin equations in the
presence of any kind of fluctuations is of great value. We

note that independently of the type of fluctuations, a linear
delay Langevin equation is inherently a non-Markovian pro-
cess.

The study of non-Markovian Langevin equations have re-
ceived a lot of attention[32–40]. From a rigorous point of
view, these equations can only be completely characterized
after knowing the full Kolmogorov hierarchy[1,2], i.e., any
n-joint probability, or equivalently anyn-time correlation.
All this information is encoded in the characteristic func-
tional [1,2] of the process. In fact, this object allows one to
get then-characteristic function of the process, from which
anyn-joint probability follows from an inverse Fourier trans-
form, and anyn-time moment or cumulant follow from an
n-derivative operation.

In a set of previous works[41–43] we have presented a
procedure to get the characteristic functional of processes
defined by linear stochastic Langevin equations with local
and nonlocal dissipation. Then, this procedure can also be
applied in the present context. Functional techniques have
also been introduced by other authors for studying disor-
dered systems[44,45] and stochastic equations with multi-
plicative noise[46].

In this paper we will apply our functional technique to
study the transient and stationary properties of linear delay
Langevin equations driven by arbitrary noises defined
through their characteristic functional. The basic idea con-
sists in obtaining an explicit expression for the realizations of
the delay stochastic process in terms of the dissipative delay
Green function, and then to get the characteristic functional
of the stochastic process, in terms of that of the driving
noise. As a full application, we will characterize the Gomp-
ertz growth model[29,30] driven by non-Gaussian fluctua-
tions.

The paper is organized as follows. In Sec. II we review
the functional method for the characterization of memorylike
Langevin equations. In Sec. III we obtain the Green function
corresponding to the linear delay evolution. Then the differ-
ent dynamical behaviors of this function are analyzed. The
interplay between the delay dissipation and a color Gaussian
noise is presented. In Sec. IV we apply our formalism to
characterize the distributions associated to the Gompertz
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model of population growth driven by white shot noise. In
Sec. V we give the conclusions.

II. FUNCTIONAL CHARACTERIZATION
OF GENERALIZED LINEAR LANGEVIN EQUATIONS

In a previous work[43] we have presented a functional
method to characterize equations of the form

d

dt
ustd = −E

0

t

dt8 Fst − t8dust8d + jstd. s1d

Our method relies in knowing the characteristic functional of
the noise

Gjsfkstdgd =KexpiE
0

`

dt kstdjstdL , s2d

wherekstd is an arbitrary test function,k¯l means an aver-
age over noise realizations, and the knowledge of the Green
function of the dissipative dynamics corresponding to the
evolution(1). Thus, for each realization of the noise, we can
express the processustd as

ustd = kustdl0 +E
0

t

dt8 Lst − t8djst8d, s3d

where Lstd is the dissipative Green function, and we have
defined

kustdl0 = Lstdus0d. s4d

With these elements, we have demonstrated that the charac-
teristic functional of the processustd

Gu„fkstdg… =KexpiE
0

`

dt kstdustdL , s5d

can be written as

Gu„fkstdg… = Gkul0
„fkstdg…Gj„fzstdg…, s6d

where

Gkul0
„fkstdg… = expHiE

0

`

dt kstdkustdl0J , s7d

and the functionzstd is defined as

zstd =E
t

`

dt8 kst8dLst8 − td. s8d

These results follow after inserting Eq.(3) in the definition
Eq. (5) and reordering the order of the time integrals.

We remark that the characteristic functional allows us to
characterize in a complete form the non-Markovian process
ustd. In fact, any n-joint probability distribution
Pshuj ,tjj j=1

n d; Pnsu1,t1;u2,t2,… ;un,tnd can be obtained by
inverse Fourier transform of the characteristic function
Gu

sndshkj ,tjj j=1
n d as

Pshuj,tjj j=1
n d =

1

s2pdn E dk1 ¯E dkn

3 expS− io
j=1

n

kjujDGu
sndshkj,tjj j=1

n d. s9d

The n-characteristic functionGu
sndshkj ,tjj j=1

n d follows from

Gu
sndshkj,tjj j=1

n d = Gusfkdstdgd, s10d

where the functionkdstd must be taken as

kdstd = k1dst − t1d + ¯ + kndst − tnd. s11d

Thus, using these last two equations and Eqs.(6)–(8), we get

Gu
sndshkj,tjj j=1

n d = expHio
j=1

n

kjkustjdl0JGjsfystdgd, s12d

where the functionystd reads

ystd = o
j=1

n

Qstj − tdkjLstj − td. s13d

On the other hand, anyn-time moments can be calculated by
differentiation of then-characteristic function as

kust1dust2d ¯ ustndl = s− idnU ] nGu
sndshuj,tjj j=1

n d
] k1 ] k2 ¯ ] kn

U
kj=0

.

s14d

In the next section, we will apply this method to characterize
linear delay Langevin equations driven by arbitrary noise
structures.

Stationary spectral properties.In general, for arbitrary
noise and arbitrary memory kernels, it is not possible to
guarantee that the dynamics(1) converges to a stationary
state. Nevertheless, if a stationary state exists, it must be
independent of the initial condition. Thus, a necessary con-
dition to reach a stationary state is

lim
t→`

Lstd → 0. s15d

In addition to this condition, clearly a stationary state can
arise only if the driving noise is stationary:

kjsvdj * sv8dl = dsv − v8dSjsvd. s16d

Here, jsvd represents the noise in a Fourier domain and
Sjsvd is its power spectrum. By assuming that the process
ustd converges to a stationary state,

kusvdu * sv8dl = dsv − v8dSusvd, s17d

from Eq.(1) it is simple to express the power spectrumSusvd
of the processustd as

Susvd = SjsvduLsvdu2. s18d

This formula allows us to characterize the spectral properties
of the stationary process in terms of the noise power spec-
trum and the Fourier transformLsvd of the dissipative Green
function.
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III. DELAY LANGEVIN EQUATIONS

Delay Langevin equations are a special case of the evolu-
tion Eq. (1). By assuming the kernel

Fstd = a dstd − b dst − Td, s19d

where,a and b are real constants, the stochastic evolution
results in

d

dt
ustd = − austd + bust − Td + jstd. s20d

The particularity of this equation comes from the delayed
contributionust−Td. Unlike usual differential equations, de-
layed equations must be supplied with an initial value func-
tion

ustd = wstd, t P f− T,0g. s21d

The intervalf−T,0g is called preinterval andwstd is called
the prefunction. Due to this functional dependence, the treat-
ment of the averaged evolution is a little different when com-
pared with those corresponding to nondelayed kernels[43].
As we will show, in the present case the Green function that
propagates the noise is different from that corresponding to
the mean value.

By denoting the Laplace transform asf̃ssd=e0
`dt e−stfstd,

from Eq. (20) we get

sũssd − us0d = − aũssd + be−sTfũssd + wss,Tdg + j̃ssd,

s22d

where we have used

E
0

`

dt e−stust − Td = e−sTfũssd + wss,Tdg. s23d

Here, the functionwss,Td is defined by

wss,Td ; E
−T

0

dt e−stwstd. s24d

From Eq.(22), the solution of Eq.(20), for each realization
of the noise, reads

ustd = kustdl0 +E
0

t

dt8 Lst − t8djst8d. s25d

This expression will allow us to apply the previously ob-
tained results for the characteristic functional ofustd. Here,
the functionkustdl0 is defined through its Laplace transform
as

kũssdl0 =
us0d + be−sTwss,Td

s+ a − be−sT . s26d

By using Eq.(23), this last expression is equivalent to the
deterministic delay differential equation

d

dt
kustdl0 = − akustdl0 + bkust − Tdl0, s27d

solved with the initial condition

kustdl0 = wstd, t P f− T,0g. s28d

On the other hand, the Laplace transform of the Green func-
tion Lstd is

L̃ssd =
1

ss+ a − be−sTd
. s29d

This expression is equivalent to the evolution

d

dt
Lstd = − aLstd + bLst − Td, s30d

with the initial conditions

Lstd = 0, t P f− T,0d and Ls0d = 1. s31d

Thus, all information about the prefunctionwstd is carried
out by the averagekustdl0. In fact, notice that the Green
function satisfies the same equation askustdl0, but it must be
solved with the null prefunction.

A. Delay Green function

In order to apply our functional formalism, we need an
explicit expression for the delay Green functionLstd. This
function was first derived in Ref.[21]. Here, in order to
clarify the procedure, we present a deduction by using a
similar technique. First, by proposing a solution of the form

Lstd = e−atLstd, s32d

from Eq. (30), the functionLstd evolves as

d

dt
Lstd = b * Lst − Td. s33d

Here, the renormalized constantb* reads

b * = beaT. s34d

Note thatLstd corresponds to the delay Green function of
Eq. (30) in the casea=0. In order to solve Eq.(33), we
propose the following ansatz:

Lstd = o
m=0

`

Lsmdstd, s35d

where the functionsLsmdstd are non-null only in the time
interval mTø tø sm+1dT. Thus, the evolution of the set of
functionsLsmdstd results in

d

dt
Lsmdstd = b * Lsm−1dst − Td. s36d

This infinite set of equations can immediately be integrated
as

Lsmdstd = Lsm−1dsmTd + b * E
mT

t

dt8 Lsm−1dst8 − Td. s37d

The first term of this expression follows from the boundary
condition at the initial time of each interval, i.e.,LsmdsmTd
=Lsm−1dsmTd. Taking into account thatLs0dstd=1, the hierar-
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chy of equations(37) can be solved iteratively. For them
function Lsmdstd, we get

Lsmdstd = o
n=0

m
sb * dn

n!
st − nTdn. s38d

Inserting this solution in Eq.(35), and after noting thatm is
the integer part ofst /Td, we get to the compact solution

Lstd = o
n=0

Intst/Td
sb * dn

n!
st − nTdn, s39d

where Ints¯d denotes the integer part. Thus, the Green func-
tion Eq. (32) finally results

Lstd = o
n=0

Intst/Td Sb

a
Dne−ast−nTd

n!
fast − nTdgn. s40d

This expression gives us the desired delay Green function as
a sum of shifted Poisson functionsfe−atsatdn/n! g weighted
by the dimensionless parametersb/ad to the powern. Note
that the number of terms in this sum increases linearly in
time with a rate 1/T.

By constructionLstd is a continuous function. On the
other hand, it is simple to realize that at timest=nT, thenth
derivative of the Green function is discontinuous. In contrast,
any other derivative is continuous. As we will see explicitly
below, these properties imply that for longer times the Green
function becomes more and more smooth.

Inserting the solution(40) in Eq. (25), and after some
algebra, the solution for each noise’s realization can be writ-
ten in the alternative way

ustd = kustdl0 + o
n=0

Intst/Td Sb

a
DnE

0

t−nT

dt8

3
e−ast−nT−t8d

n!
fast − nT− t8dgn jst8d. s41d

This expression can also be obtained by iteratively integrat-
ing Eq. (20).

B. Stationary spectrum

As we will see in the next subsection, there is a set of
parameter values in the spacesa,b,Td that guarantee the
condition(15). In this case, for stationary noises, the associ-
ated stochastic process to the delay Langevin equation(20)
reaches a stationary state whose spectral properties can be
characterized through Eq.(18). Therefore, using Eq.(29),
with s=−iv, we get

Susvd =
Sjsvd

a2 + b2 + v2 + 2bha cosfvTg + v sinfvTgj
.

s42d

In the casea=0 we recuperate the known expression[27]

Susvd =
Sjsvd

b2 + v2 + 2bv sinfvTg
. s43d

In the next subsection we will analyze the stability of the
Green function, where these results apply.

C. Stability and characteristic behaviors of the transient
dissipative dynamics

Here we will analyze different dynamical behaviors of the
delay Green function that arise by changing the values of the
parametersa, b, andT.

Of special interest are the stability properties, i.e., the
characterization of the set of values of the parametersa, b,
and T that guarantee limt→`Lstd=0. As our expression Eq.
(40) is a particular solution of the deterministic delay evolu-
tion Eq. (30), the stability analysis of the Green function is
equivalent to the stability analysis of that delay evolution
equation. It is known[19,20,26,27] that a necessary and suf-
ficient condition for the stability of any solution of Eq.(30)
is

T , Tc ;
cos−1Sa

b
D

Îb2 − a2
. s44d

This inequality defines the domain of stability, whose bound-
aries, in the planesa,bd, are given by the line

a = b s45d

and the curve defined parametrically as

a = − w/tanswTd, s46d

b = − w/sinswTd, s47d

where for a givenT, wTP s0,pd; these two boundaries in-
tersect at the points−1/T,−1/Td (see Fig. 1 in Ref.[26] with
a→−a). For the parametric boundary, the variablew can be
identified with the frequency of a solution expfiwtg of Eq.
(30), which implies the relation

w = Îb2 − a2. s48d

In the casea=0, it is also possible to predict that for
0.bT.−1/e any solution decays monotonously, and for
−1/e.bT.−p /2 any solution develops a time oscillatory
decay. Outside these domain, the solutions, for long times,
grow indefinitely[27].

In the next figures we will analyze the behavior of the
delay Green function in the domain of stability. In Fig. 1 we
have plotted some different behaviors by choosing the pa-
rametersa andb over the boundaries of stability. In Fig. 1(a),
we have chosen the parameters just over the parametric
boundary, Eqs.(46) and (47), with T=1 and w=1, which
implies a=−0.642093 andb=−1.1884. In the first period of
time T the Green function is given byLstd=expf−atg. After
this first step, we notice that the Green function oscillates in
a regular way. This behavior agrees with the previous analy-
sis of stability. Consistently, the frequency of the oscillations
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is given byw. Furthermore, we have checked that after the
first intervalT, and in the time regime of this plot,Lstd can
be very well adjusted by a trigonometric function(dotted
line), Lstd<A0cosfwt+f0g, with A0=1.9 andf0=0.35. In
general, an analytical adjustment can be only found when the
behavior ofLstd is smooth and regular.

In Fig. 1(b) we have chosenT=1, and w=3.12 which
implies a=144.71 andb=−144.505. Note that in this case,
the dissipative ratesuau and ubu are much larger than 1/T. In
consequence, after a fast exponential decay, the Green func-
tion over the first period of timeT is approximately zero. At
later times, the Green function presents a series of extremely
narrow and sharp peaks. In the inset we show the first posi-
tive one. We have checked that the period of these oscillating
peaks is given by 2p /w<2. As time increases, the pulses
become wider and smooth and the Green function becomes
more and more smooth. This characteristic arises as a conse-
quence of the continuity of higher derivatives of the Green
function as time increases. At even higher times(not showed
in the plot), Lstd becomes an oscillatory function whose be-
havior can be very well adjusted by a decaying trigonometric
function. In general, the rate of this decay is much bigger
than the dissipative ratesa and b. This slow decay will be
analyzed explicitly in the next examples.

Whenw approaches the value 2p, the absolute value ofa
and b grows indefinitely. In this situation, the interval over
which the Green function presents a narrow behavior also
grows. We remark that this unusually sharp behavior implies
that the processustd will be closedmost of the time, and will

only respond to the external noise perturbation within narrow
windows of time.

In Fig. 1(c) we have chosen the parameters over the other
boundary of stability, Eq(45), with a=b=20 andT=1. The
behavior is similar to that of the previous figure. However, in
this case the peaks of the Green function are positive at all
times. In fact, we have checked that forb.0, inside the
domain of stability,Lstd is always positive. We remark that
increasing the value ofa=b, the peaks are narrowed, present-
ing a structure similar to that of Fig. 1(b).

The main difference of behavior over the two boundaries
appears in the long time regime. In fact, the upper boundary
of the domain of stability, Eq.(45), can be associated with a
solution with frequencyw=0. Thus, we expect that at long
times the Green function becomes a nonoscillatory function.
In order to check this change of behavior, in Fig. 1(d) we
have chosena=b=3. Here, as the values of the dissipative
constants are smaller than in the previous case, only a few
peaks appear and the Green function, after a short transient,
seems to reach a stationary constant value without any oscil-
lation.

In the inset, we have plotted the Green function for higher
values of time. Consistently we found a monotonous decay
which can be fitted asLstd<A0exps−g0td with A0=0.25 and
g0=1/4000. We notice that the rate of this exponential decay
is much less than the dissipative ratesa and b. This
asymptotic slowing down decayis characteristic of the
boundaries of stability and it is also present for parameter
values near of the boundary line.

FIG. 1. Delay Green functionLstd as a function of time in arbitrary units. The parameters are(a) a=−0.642093,b=−1.1884, values
consistent withw=1. (b) a=144.71,b=−144.505, values consistent withw=3.12.(c) a=b=20, and(d), a=b=3; in all cases takingT=1.
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In general, inside the domain of stability, the Green
function have different behaviors that approximate the pre-
vious analyzed limits. In Fig. 2 we have plotted some of
these characteristic behaviors. In Fig. 2(a) we have chosen
a=0.2, b=−1.6, andT=1. In this case, the Green function
presents a regular and damped oscillatory behavior which,
after the first period of timeT, can be approximated by
Lstd<A0exps−g0tdcossw0t+f0d (dotted line) with A0=1,
g0=1/22,w0=1.666,f0=1.07.

In Fig. 2(b), the parameters were chosen asa=0.25,
b=−0.25, andT=1. In this case, the Green function can be
approximated in a rough way by matching two exponential
functions.

In other cases, the Green function does not show a regular
behavior, and it is not possible to find a simple analytical
approximation valid for all times. Therefore, one can not
define a characteristic time scale for the decaying behavior of
the Green function. Some examples are shown in Fig. 2(c),
where we have chosena=3, b=−2, T=1 and in Fig. 2(d),
wherea=1, b=0.45, andT=1.

We remark that in the casea=0 the behavior of the Green
function is similar to those of Figs. 2(a) and 2(b). In fact,
when the local dissipation is zero, after the first step of time,
the Green function can be very well adjusted by a monoto-
nous or oscillatory smooth decay. The main difference with
the caseaÞ0 is the behavior during the first step of timeT,
where instead of an exponential decay, it takes a constant
valueLstd=1.

D. Nonwhite Gaussian noise

Here, we will apply our functional approach to character-
ize the averaged delay dynamics when the driving noise is a
Gaussian one. A zero-mean Gaussian noisejstd, with an ar-
bitrary correlation functionsjst2,t1d=kjst2djst1dl, is char-
acterized by the functional[1]

Gjsfkstdgd = expS−
1

2
E

0

`

dt2E
0

`

dt1 kst2dsjst2,t1dkst1dD .

s49d

Therefore, from Eqs.(6)–(8) the characteristic functional of
the processustd results

Gusfkstdgd = Gkul0
sfkstdgd

3 expS−
1

2
E

0

` E
0

`

dt2 dt1 kst2dkst1dsust2,t1dD ,

s50d

where

FIG. 2. Delay Green functionLstd as a function of time in arbitrary units. The parameters are(a), a=0.2, b=−1.6. (b) a=25,
b=−0.25.(c) a=3, b=−2. (d) a=1, b=0.45; in all cases takingT=1.
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sust2,t1d =E
0

t2

dpE
0

t1

dq Lst2 − pdsjsp,qdLst1 − qd,

s51d

is the correlation function of the processustd, i.e.,
sust2,t1d=kust2dust1dl−kust2dlkust1dl. As expected, the lin-
ear delay processustd is Gaussian.

Now we will analyze the interplay between the delay dy-
namics and the noise properties. We will assume an exponen-
tial correlation functionsjst2,t1d=B exps−gut2−t1ud. Note
that in the limit B→`, g→`, with B/ s2gd=D this noise
reduces to a white Gaussian noise with intensityD.

In the next figures we will describe the averaged dynam-
ics through the quadratic averaged value ofustd

Cstd ; ku2stdl − kustdl2. s52d

This object can be obtained from Eq.(51) as Cstd=sust ,td,
with the Green functionLstd defined by Eq.(40). Of special
interest is the transient dynamics over the boundaries of sta-
bility. In Fig. 3 we show the behavior ofCstd as a function of
time. For the Green function(see inset) we have chosena
=b=33 andT=1. The different curves correspond to differ-
ent values of the noise memory parameter. From top to bot-
tom, we have setg=0.25, 0.5, 1, and 2.5, in all cases taking
B=1. As initial condition we have used a null prefunction
wstd.

We note that by increasing the noise memory parameterg,
the dispersion of the processustd grows with a smaller rate.
On the other hand, we note that the growing dynamics have
a ladder structure, which is a direct consequence of the peak
structure of the Green functionLstd. As expected, in an in-
termediate regime(not shown in the plot), Cstd loses the
ladder structure and in the asymptotic long time regime it
reaches a stationary constant value.

In Fig. 4 we show the transient behavior ofCstd over the
parametric boundary. We have chosenT=1 and w=3.05,
which impliesa=33.2064 andb=−33.3462. In this case, the
peaks of the Green function change their sign after each pe-
riod. From bottom to top we have choseng=0.25, 0.5, 1, and
2.5, in all cases takingB=1. In opposition to the previous
case, here an increase of the noise memory parameterg leads
to a faster increase of the dispersionCstd. Furthermore, we
note that when the characteristic time of the noise memory is
bigger than the time stepT, i.e., 1 /g.T, during the occur-
rence of the negative pulses, the dispersionCstd diminishes.

We remark that the different dependencies ofCstd on the
rateg are directly related with the sign of the Green peaks.
On the other hand, in the limit of a white noise, the behavior
of Cstd over each boundary is approximately the same. In
fact, for the case ofd-correlated Gaussian noise, it is simple
to realize that all information of the dissipative dynamics is
introduced through the square of the delay Green function
L2std [see Eq.(50) and (51) with sust2,t1d=Ddst2−t1d].

IV. GOMPERTZ MODEL OF POPULATION
GROWTH

In this section we will apply our functional method to
characterize a model of population growth with delay. Any
realistic model for population dynamics must present two
characteristic behaviors. First, for small populations the dy-
namics must grow in an exponential way; second, a satura-
tion effect must arise in such a way to stop the previous
behavior. The delay Gompertz model[29,30] captures all
these dynamical properties in a simple way and also takes
into account that the growth rate depends on the history of
the populations. This nonlinear model reads

dQstd
dt

= bQstdlnFQst − Td
Q*

G + Qstdjstd. s53d

Here, the constantT is related with the maturation or the
generation time, the constantQ* controls the value of the

FIG. 3. DispersionCstd of the delay processustd driven by a
Gaussian noise with an exponential correlation, as a function of
time (arbitrary units). The parameters of the Green function(inset)
are T=1, a=b=33. From top to bottom the parameters of the
Gaussian color noise areg=0.25, 0.5, 1, and 2.5, in all cases taking
B=1. As initial prefunction we have used the null function.

FIG. 4. DispersionCstd of the delay processustd as in Fig. 3.
Here the parameters of the Green function(inset) are T=1, a
=33.2064,b=33.3462, which are consistent withw=3.05. From
bottom to top, the parameters of the Gaussian color noise areg
=0.25, 0.5, 1, and 2.5, in all cases takingB=1.
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saturation population, andb scales the exponential growth
for small populations. The last term introduces multiplicative
fluctuations which are size dependent.

Now we will characterize the average behavior of this
model. As it is known[29,30,41], by using the transforma-
tion

Qstd = Q * expfustdg, s54d

the previous evolution reduces to a linear delay Langevin
equation

dustd
dt

= bust − Td + jstd. s55d

Thus, the population growth can be completely characterized
with our functional approach(Sec. II). First, from the trans-
formation Eq.(54), it is possible to write anyn-moment of
the populationQstd as

kQst1d ¯ Qstndl = Q* nkeust1d¯eustndl. s56d

The right term of this equality can be expressed in terms of
the n-characteristic function of the processustd. Thus, by
using our functional approach, Eq.(12), then-time moments
can finally be expressed in terms of the characteristic func-
tional of the noisejstd as

kQst1d ¯ Qstndl = Q* nexpHo
j=1

n

kustjdl0JGjsfgstdgd,

s57d

wherekustdl0 is defined by Eq.(27) with a=0, and we have
introduced the function

gstd = − io
j=1

n

Ustj − tdLstj − td. s58d

The delay Green functionLstd is given by Eq.(40) after
taking a=0.

Also it is possible to obtain anyn-joint probability density
of the population model. In fact, by using the transformation
Eq. (54) any n-joint probability density ofQstd can be ob-
tained straightforwardly from the relation

PshQj,tjj j=1
n ddQ1 ¯ dQn = Pshuj,tjj j=1

n ddu1 ¯ dun. s59d

Here, anyn-joint probability Pshuj ,tjj j=1
n d follows from Eq.

(9).
At this point, it is important to remark that the previous

results are based in the change of variable Eq.(54). All pos-
teriori calculations were obtained by using a normal deri-
vative calculus. Therefore, in the case of white fluctuations,
Eq. (53) must be interpreted as a Stratonovich-Langevin
equation[30].

White shot noise

Now we will apply the previous results to the case in
which the fluctuations correspond to a symmetrical white
shot noise[1,2,41–43]. This noise is defined by the func-
tional

Gjsfkstdgd = expS2rE
0

`

dthcosfAkstdg − 1jD . s60d

The realizations of this noise consist in a series of arriving
d-Dirac peaks with amplitude ±A, wherer is the density of
the arriving pulses in each direction. Notice that in the limit
A→0, r→` with A2r=D /2, this symmetrical white shot-
noise converges to a Gaussian white noise with intensity co-
efficient D, i.e., Eq.(49) with sjst2,t1d=Ddst2−t1d.

Using Eq.(57), the first momentkQstdl of the Gompertz
model can be written as

kQstdl = Q * expH2rE
0

t

dtfcoshfALstdg − 1gJ . s61d

Here, in order to simplify the analysis we have assumed that
the prefunctionwstd of the processustd is null, which implies
that the prefunction ofQstd is the constantQ*. In Fig. 5 we
have plottedkQstdl for different values of the time delayT,
maintaining the noise parameters fixed. We found that by
increasingT, the saturation value of the processQstd in-
creases. In general the behavior of the average value is simi-
lar to that found with a Gaussian white noise. Nevertheless,
an object that develops strong non-Gaussian characteristics is
the one-time probability density.

From Eqs.(12) and (60), for the one-time characteristic
function of the processustd we get

Gu
s1dsk,td = expH2rE

0

t

dt hcosfAkLstdg − 1jJ , s62d

where, as in the previous equation, we have assumed that the
prefunction of the processustd equals zero. This expression
allows us to get numerically the one-time probability density
at any time by using a fast Fourier algorithm. After,PsQ,td
follows from Eq.(59).

FIG. 5. Average valuekQstdl of the Gompertz model driven
by a symmetrical white shot noise. From bottom to top we have
chosenT=0.25, 0.5, 0.65, 0.75, 0.8, and 0.85, in all cases taking
b=−p /2. The parameter of the noise arer=0.15,A=Î1/s2rd, and
the saturation parameter isQ* =1.
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As in Ref. [29], we will characterize the stationary prob-
ability of the population sizeQstd for different values of the
delay T and noise parameters. One of the most interesting
aspects to analyze are the effect of the non-Gaussian proper-
ties of the driving noise.

In Ref. [43], by analyzing a generalized Langevin equa-
tion, Eq. (1), with an exponential memory function

Fstd = d expf− ltg, s63d

and driven by a symmetrical white shot noise, we have found
that the stationary statePsud develops strong non-Gaussian
characteristics only when the rate of the arriving pulses of
the noise is smaller than the characteristic decay rate of the
corresponding Green function. This condition works both for
the monotonous and oscillating regime of the Green func-
tion. On the other hand, the amplitudeA of the shot noise,
introduces only a rescaling of the stationary distribution. We
expect that these results remain approximately valid in the
present case. In fact, as we will see, after the first period of
time T, the delay Green function of Eq.(55) has a decay
behavior very similar to that obtained with an exponential
kernel.

In Fig. 6 we show a set of stationary distributionsPsQd
obtained for different delay timesT and maintaining the
noise parameters fixed. The noise parameters areA=0.1 and
r=50, which impliesD=1. The parameters of the Green
function, Eq.(40), were chosen asa=0, andb=−p /2. The
different plots correspond toT=1/4 (dotted line), T=1/2
(dashed line), and T=0.85 (full line). In inset (a) we show
the decay behavior of the corresponding delay Green func-
tions. We have tested that after the first intervalT, these
Green functions can be analytically approximated by the ex-
pression

Lstd = A0expf− g0st − Tdgcosfw0t − f0g, t . T. s64d

For T=1/4 we getg0=2.6,w0=0, f0=0. ForT=1/2 we get
g0=1, w0=2.4, f0=1.2. and forT=0.85 we getg0=0.143,
w0=1.75,f0=0.967. Then, using our previous argument we
expect a Gaussian induced behavior(approximately) for
r.g0. In this figure this condition is clearly satisfied, and
the distributionsPsQd can be associated with a Gaussian
distribution for the underlying processustd. In inset (b) we
show the corresponding stationary distributions of the pro-
cessustd, which in fact, can be very well approximated by
Gaussian distributions. Furthermore, we notice that the equi-
librium distributionsPsQd coincide with those obtained in
Ref. [29] by using a driving Gaussian white noise.

In Fig. 7 the noise parameters arer=5/4 andA=Î2/5,
which impliesD=1. Here, as the rate of the noise is smaller
than in the previous case, non-Gaussian characteristics for
the processustd are manifest in the stationary distribution
PsQd. In fact, we note that when the decay rate of the Green
function is larger than the noise rater, a series of sharp
narrow peaks appear in the stationary distribution. This effect
is more pronounced for smaller values ofT, which in the
present example implies bigger values of the characteristic
decay rateg0.

We notice that the peaks of the stationary distribution
PsQd appear at positionsQp=Q*expf±pAg, where p is an
arbitrary natural number. This result follows from the fact
that in the distribution of the associated processustd, the
peaks appear at positionsup= ±pA [43]. This effect can be
clearly seen in inset(b), where we have plotted the associ-
ated distributionsPsud.

In Fig. 8 we show a set of stationary distributionsPsQd by
maintaining fixed the time delayT=0.85fa=0, b=−p /2g
and changing the noise parameters,r=0.1 (dotted line),
r=0.15 (dashed line), and r=0.25 (full line), in all cases

FIG. 6. Stationary distributionPsQd of the Gompertz model
driven by a symmetrical white shot noise for different delay times,
T=0.25 (dotted line), T=0.5 (dashed line), andT=0.85 (full line),
in all cases takingb=−p /2. In inset(a) we show the corresponding
Green functionsLstd. Inset (b) shows the associated distributions
Psud. In all cases, the noise parameters arer=50 andA=0.1. The
saturation parameter isQ* =1.

FIG. 7. Stationary distributionPsQd of the Gompertz model
driven by a symmetrical white shot noise for different delay times,
T=0.25 (dotted line), T=0.5 (dashed line), andT=0.85 (full line),
in all cases takingb=−p /2. In the inset we show the associated
distributionsPsud. The noise parameters arer=5/4 andA=Î2/5.
The saturation parameter isQ* =1.
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taking A=1. Here the characteristic decay rate of the Green
function is g0=0.143. Consistently, we found that non-
Gaussian induced aspects tend to arise whenr,g0. In con-
trast with the previous figure, here only one peak is visible.
In inset(a) we show the associated distributionsPsud, where
the transition between Gaussian and non-Gaussian distribu-
tions is clearly seen.

An important aspect to analyze is the set of values in the
space of the parametersA, r, b, andT where the stationary
distributionPsQd and the associated distributionPsud reflect
the non-Gaussian structure of the driven noise. As mentioned
previously, this problem is determined mainly by the rela-
tions between the decay rate of the Green function and the
rate r of the driving Poisson noise. Furthermore, we notice
that the influence of the constantb can always be taken into
account by a time rescalingt= ubut. On the other hand, the
shift amplitude ±A of the arriving pulse only introduces a
rescaling of the full process. Thus, the four-dimensional
space can be reduced to a two-dimensional space defined by
the rescaled parametersr /b andbT.

In Fig. 9 we have plotted the phase space structure of the
Gompertz model, by showing the region of parameter values,
in the region of stability −p /2,bT,0, where the stationary
distributions depart from those obtained with a driving
Gaussian white noise. In order to determine the points that
define the boundary line, for each set of parameter values, we
have approximated the associated distributionsPsud, in a ar-
bitrary interval around the originu P s0,«d, by a quadratic
polynomialPsud<au2+bu+Ps0d. Then, it is simple to dem-
onstrate that whenua« /bu,1, the stationary distribution
around the origin is dominated by a linear approximation. In
this case,Psud strongly departs from a Gaussian distribution
which are characterized by a null slope around the origin.
The change of behavior of the slope around the origin can be
clearly seen in the insets of Figs. 7 and 8. Furthermore, we
have checked that when the conditionua« /bu.1 is satisfied,

the quotient between the fourth cumulant and the square of
the second cumulant of the distributions is less than one,
indicating that a Gaussian is approaching. We remark that by
satisfying only this last condition, it is not possible to guar-
antee the validity of a Gaussian approximation.

We have checked that the line that divides the two re-
gimes corresponds approximately to the points for which the
characteristic decay rate of the delay Green function is of the
same order as the rate of the arriving pulses, i.e.,r<g0. In
fact, note that in the limitubuT→0 the boundary curve goes
approximately tor / ubu<1. This limit corresponds to the
nondelay caseT=0, where Lstd=expsbtd. Thus, the non-
Gaussian effect appears forr,g0<ubu. Furthermore, the be-
havior near this point can be understood by noting that for
small values ofbT, the Green function of Eq.(55) can be
approximated byLstd<expfbt/ s1+bTdg. This result implies
a local increasing of the characteristic decay rate of the
Green function with respect to the caseT=0. Therefore, the
boundary line has a positive slope nearT=0.

On the other hand, in the limits2/pdubuT→1 the Green
function oscillates without any decay. Thus, its characteristic
decay rateg0 goes to zero, which implies that in this limit the
dynamics does not develop any non-Gaussian characteristic.
Near the points2/pdubuT=1, the Green function presents a
non-null decay rate whose value increases by diminishingT.

At intermediate values ofs2/pdubuT the Gaussian-non-
Gaussian boundary line reach a maximum value. Clearly, this
effect arise due to the different dependences of the decay rate
of the Green function near the boundary of stability,
s2/pdubuT<0 ands2/pdubuT<1.

In this plot, we have indicated with a vertical line the
value ubuT=1/e, which corresponds to the point where the
Green function of Eq.(55) changes its characteristic behav-
ior from a monotonous decay to an oscillatory one[27]. As

FIG. 8. Stationary distributionPsQd of the Gompertz model
driven by a symmetrical white shot noise for different noise param-
eters,r=0.1 (dotted line), r=0.15 (dashed line), andr=0.25 (full
line), in all cases takingA=1. In inset(a) we show the associated
distributionsPsud. The parameters of the Green function, inset(b),
areT=0.85 andb=−p /2. The saturation parameter isQ* =1.

FIG. 9. Phase space of the stationary distribution of the Gomp-
ertz model. The curve divides the different regions where the un-
derlying processustd develops Gaussian and non-Gaussian charac-
teristics. The circles correspond to the point obtained numerically
(see text). The vertical lines indicate the point, on thes2/pdubuT
axis, where the Green function changes its characteristic behavior
from a monotonous decay to an oscillatory decay.
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can be seen from the plot, the kind of decay of the Green
function does not have any influence in the phase space of
the parameters.

Finally, we want to comment on the difference among the
non-Gaussian propertiesof the stationary distributions ob-
tained by choosing either an exponential kernel, Eq.(63), or
the delay kernel, Eq.(19) fa=0g. As was touched on previ-
ously, the main difference between the behaviors of the cor-
responding Green functions appears in the first interval of
time T, where the delay Green function is constant,Lstd=1.
This property implies the absence of any dissipation in the
time interval 0, t,T. In consequence, the non-Gaussian
peaks of the delay distributions are much higher that in the
case of the exponential kernel. In fact, in absence of dissipa-
tion the realizations of the processustd consist in a discrete
random walk over the sitesup= ±pA. Clearly, this enhanced
effect is more pronounced when the delay timeT is of the
order of the characteristic time decay of the Green function
Lstd.

V. SUMMARY AND CONCLUSIONS

We have presented a functional formalism that allows a
full characterization of linear delay Langevin equations with
arbitrary external fluctuations defined through its character-
istic functional. This method relies on the possibility of ob-
taining an explicit expression for the realizations of the delay
stochastic process in terms of the associated Green function
of the linear problem. Then, the characteristic functional of
the delay process can be written in terms of that of the noise
and in terms of the delay Green function. From the charac-
teristic functional it is possible to get anyn-joint probability

density and anyn-time moment or cumulant.
By analyzing the dissipative transient dynamics over the

boundaries of stability, we have found some amazing and
interesting characteristic behaviors. First, when the dissipa-
tive constants are much larger than the inverse of the delay
time 1/T, the transient dynamics presents a kind of periodic
closednessto the external perturbations. In this situation, the
system only responds to the external world within small win-
dows of time. On the other hand, over both boundary lines,
in the long time regime, the Green function develops aqua-
sistationary statewhere it decays in an exponential way with
a rate much larger than the characteristic rate constants of the
dissipative dynamics. Over the parametric boundary line,
Eqs. (46) and (47), the decay is oscillatory and over the
boundary linea=b the decay is monotonous.

As a concrete application of our formalism we have ana-
lyzed the Gompertz model of population growth driven by a
symmetric white shot noise. This model can be mapped with
a linear delay Langevin equation, where our formalism ap-
plies. We have shown that the non-Gaussian property of this
noise may lead to the occurrence of narrow peaks in the
stationary population distribution. This striking property is
directly related to the possibility of obtaining non-Gaussian
stationary distributions in the associated linear delay Lange-
vin equation. This last property arises when the average
waiting-time between the arrival of thed-Dirac pulse of the
white shot noise is larger than the characteristic decay time
of the delay Green function.

Finally, we want to remark that our formalism opens the
possibility of studying linear delay process driven by arbi-
trary noises, such as radioactive noise, Levy noise, and Abel
noise [43]. In the last two cases, both noises may induce
long-tail structures in the population distributions.
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